Computational metric embeddings

نویسنده

  • Anastasios Sidiropoulos
چکیده

We study the problem of computing a low-distortion embedding between two metric spaces. More precisely given an input metric space M we are interested in computing in polynomial time an embedding into a host space M ′ with minimum multiplicative distortion. This problem arises naturally in many applications, including geometric optimization, visualization, multi-dimensional scaling, network spanners, and the computation of phylogenetic trees. We focus on the case where the host space is either a euclidean space of constant dimension such as the line and the plane, or a graph metric of simple topological structure such as a tree. For Euclidean spaces, we present the following upper bounds. We give an approximation algorithm that, given a metric space that embeds into R with distortion c, computes an embedding with distortion c∆ (∆ denotes the ratio of the maximum over the minimum distance). For higher-dimensional spaces, we obtain an algorithm which, for any fixed d ≥ 2, given an ultrametric that embeds into R with distortion c, computes an embedding with distortion c. We also present an algorithm achieving distortion c log∆ for the same problem. We complement the above upper bounds by proving hardness of computing optimal, or near-optimal embeddings. When the input space is an ultrametric, we show that it is NP-hard to compute an optimal embedding into R under the l∞ norm. Moreover, we prove that for any fixed d ≥ 2, it is NP-hard to approximate the minimum distortion embedding of an n-point metric space into R within a factor of Ω(n). Finally, we consider the problem of embedding into tree metrics. We give a O(1)approximation algorithm for the case where the input is the shortest-path metric of an unweighted graph. For general metric spaces, we present an algorithm which, given an n-point metic that embeds into a tree with distortion c, computes an embedding with distortion (c logn) √ . By composing this algorithm with an algorithm for embedding trees into R, we obtain an improved algorithm for embedding general metric spaces into R. Thesis Supervisor: Piotr Indyk

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Embeddings--Beyond One-Dimensional Distortion

Metric spaces and their embeddings have recently played a prominent role in the development of new algorithms. So far, most of the emphasis was on embeddings that preserve pairwise distances. A very intriguing concept introduced by Feige [Fei00], allows us to quantify the extent to which higher-dimensional structures are preserved by a given embedding. We investigate this concept for several ba...

متن کامل

Lower Bounds on Embeddings of Planar Graphs into the l1 Metric

This paper presents an overview of existing bounds on l1-embeddings of planar metrics. A new family of graphs containing the K2,3 minor is introduced. Computational results on this family of graphs establish a new lower bound on the constant in the following conjecture: There exists an absolute constant Cmax > 0 such that every finite planar metric embeds into the l1 metric with distortion < Cm...

متن کامل

Shortest Path Embeddings of Graphs on Surfaces

The classical theorem of Fáry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of Fáry’s theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a sh...

متن کامل

Multiembedding of Metric Spaces

Metric embedding has become a common technique in the design of algorithms. Its applicability is often dependent on how high the embedding’s distortion is. For example, embedding finite metric space into trees may require linear distortion as a function of its size. Using probabilistic metric embeddings, the bound on the distortion reduces to logarithmic in the size. We make a step in the direc...

متن کامل

Word Re-Embedding via Manifold Dimensionality Retention

Word embeddings seek to recover a Euclidean metric space by mapping words into vectors, starting from words cooccurrences in a corpus. Word embeddings may underestimate the similarity between nearby words, and overestimate it between distant words in the Euclidean metric space. In this paper, we re-embed pre-trained word embeddings with a stage of manifold learning which retains dimensionality....

متن کامل

Fréchet Embeddings of Negative Type Metrics

We show that every n-point metric of negative type (in particular, every n-point subset of L1) admits a Fréchet embedding into Euclidean space with distortion O (√ log n · log log n), a result which is tight up to the O(log log n) factor, even for Euclidean metrics. This strengthens our recent work on the Euclidean distortion of metrics of negative into Euclidean space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008